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Abstract 

Background:  The cyclical nature of gene expression in the intraerythrocytic development cycle (IDC) of the malaria 
parasite, Plasmodium falciparum, confounds the accurate detection of specific transcriptional differences, e.g. as pro‑
voked by the development of drug resistance. In lab-based studies, P. falciparum cultures are synchronized to remove 
this confounding factor, but the rapid detection of emerging resistance to artemisinin therapies requires rapid analysis 
of transcriptomes extracted directly from clinical samples. Here we propose the use of cyclical regression covariates 
(CRC) to eliminate the major confounding effect of developmentally driven transcriptional changes in clinical sam‑
ples. We show that elimination of this confounding factor reduces both Type I and Type II errors and demonstrate the 
effectiveness of this approach using a published dataset of 1043 transcriptomes extracted directly from patient blood 
samples with different patient clearance times after treatment with artemisinin.

Results:  We apply this method to two publicly available datasets and demonstrate its ability to reduce the confound‑
ing of differences in transcript levels due to misaligned intraerythrocytic development time. Adjusting the clinical 
1043 transcriptomes dataset with CRC results in detection of fewer functional categories than previously reported 
from the same data set adjusted using other methods. We also detect mostly the same functional categories, but 
observe fewer genes within these categories. Finally, the CRC method identifies genes in a functional category that 
was absent from the results when the dataset was adjusted using other methods. Analysis of differential gene expres‑
sion in the clinical data samples that vary broadly for developmental stage resulted in the detection of far fewer 
transcripts in fewer functional categories while, at the same time, identifying genes in two functional categories not 
present in the unadjusted data analysis. These differences are consistent with the expectation that CRC reduces both 
false positives and false negatives with the largest effect on datasets from samples with greater variance in develop‑
mental stage.

Conclusions:  Cyclical regression covariates have immediate application to parasite transcriptome sequencing 
directly from clinical blood samples and to cost-constrained in vitro experiments.
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Background
The parasite Plasmodium falciparum causes the most 
lethal form of malaria, a vector-borne disease that killed 
an estimated 405,000 people in 2018, 272,000 of them 
children under the age of five [1]. Although malaria 
prevention strategies and early treatment efforts have 
reduced the worldwide incidence of malaria by 18% since 
2010, the persistence of the disease is due in part to the 
rapid emergence and spread of parasites resistant to anti-
malarial drugs, including artemisinin-based combination 
therapies, the last line of defense in regions where multi-
ple drug resistance has arisen [2–4].

Most antimalarial drugs, including artemisinin-based 
combination therapies (ACT), target the parasite in the 
intraerythrocytic development cycle (IDC), when the 
parasite invades red blood cells [5]. However, differ-
ent ACTs have reduced effectiveness at specific devel-
opmental stages during the IDC. Accurate detection of 
the resistant phenotype for a particular drug treatment 
requires accurate identification of these stages. Given 
accurate detection of stage within the IDC, whole tran-
scriptome gene expression of the malaria parasite, in 
combination with whole genome DNA sequence, can 
identify pathways that result in drug resistance [6–11]. 
Frontline detection of newly emerging resistance to 
ACT therapies requires comparison of multiple single 
time point clinical (ex vivo) samples and therein lies an 
important problem. Unless all transcriptomes are pre-
cisely aligned at identical stages of development, changes 
in gene expression due to drug response are significantly 
confounded with gene expression due to developmental 
stage.

The vast majority of P. falciparum transcripts is 
expressed in a single sinusoidal pattern smoothly extend-
ing in a continuous cascade across a morphological pro-
gression through three asexual stages: ring, trophozoite, 
and schizont [12–15]. The period of this curve corre-
sponds to one complete progression through the IDC and 
can be extended or compressed with varying amplitude 
corresponding to changes in maximal gene expression 
depending on the characteristics of individual parasite’s 
IDC length[16]. Importantly, the order of periodically 
expressed genes is broadly conserved between parasites 
but not entirely static [16]. This pattern is observed in 
other Plasmodium species and another apicomplexan 
parasite, Toxoplasma gondii [17]. Accurate detection 
of transcriptional differences between parasite strains 
across the IDC requires that the comparisons are made 
at coinciding developmental points in the IDC. For this 

reason, comparative analysis of gene expression in drug 
susceptible and drug resistant strains remains a chal-
lenge due to the potentially large confounding effects of 
the cyclical gene expression that drives the P. falciparum 
development through the three asexual stages of IDC 
[18].

While single P. falciparum cultures in vitro and infec-
tions in vivo in a single individual progress in a largely 
synchronous manner, the determinants of synchrony 
are not yet fully understood, influenced by both external 
factors and an intrinsic circadian-like regulatory mecha-
nism [16]. For in vitro studies, it is possible to impose 
synchrony experimentally, albeit imperfectly. The point 
at which half of an experimentally well-synchronized cul-
ture has converted from mature schizonts to new rings, 
the first stage of progression through the IDC, is the 0 h 
post-invasion (hpi) benchmark [19–21]. Detection of this 
“start point” is usually accomplished visually using coarse 
differences in cellular morphology, e.g. between rings 
and schizonts. Samples are then collected at specific 
time increments after 0 hpi, prescribed by the particular 
experiment. In the case of ex vivo studies, the parasites 
taken straight from patients are not laboratory cultured 
and thus these samples cannot be experimentally syn-
chronized and aligned relative to each other. Simple mor-
phological examination of samples based on microscopy 
is not accurate enough to ensure that ex vivo transcrip-
tomes are precisely aligned [22]. The predictive strength 
of the correlation of gene expression values to a measure 
of drug resistance for each ex vivo sample (e.g., patient 
clearance half-life) depends heavily on minimizing the 
confounding effect using an alignment method that can 
account for the cyclical pattern of stage progression.

The emergence of resistance to artemisinin therapies, 
the last line of defense in geographic regions where mul-
tiple drug resistance has arisen, occurred during the time 
when rapid whole transcriptome sequencing of parasites 
in ex vivo samples became feasible [23, 24]. This spurred 
an intensive search for the genetic mechanisms of arte-
misinin resistance through comparison of parasites tran-
scriptomes in ex vivo blood samples taken from patients 
for whom drug clearance half-lives, the standard clini-
cal measure of artemisinin resistance, were also avail-
able. While P. falciparum exhibits synchronous behavior 
within a single person, blood samples taken from dif-
ferent people will necessarily be at some degree of dif-
ferent IDC developmental stages. In a study of 1043 ex 
vivo whole transcriptome samples designed to detect 
the mechanisms for artemisinin resistance, Mok et  al. 
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relied on k-means clustering as a transcriptional staging 
method, identifying three subgroups of samples based 
on their developmental profiles [24]. Comparison of the 
three clusters of whole transcriptomes against the multi-
time point transcriptome data of parasite strain Dd2 
yielded transcriptional stage estimates of 8-10 hpi for 
Group A and a much broader transcriptional stage dis-
tribution (10-20 hpi) for group B [24, 25]. The authors 
concluded that the three subgroups (A, B and C) mapped 
onto the three stages in IDC progression, with the best 
fit for Group A and the worst for the late stage group C, 
which was not extensively analyzed.

IDC progression differences within these clusters could 
still lead to misattribution of stage-based transcriptional 
differences to the variable under study (e.g., drug sus-
ceptibility). Another study applied a novel correction 
method to the 2015 Mok et  al. data by removing the 
effect of a linear and polynomial covariate of IDC time 
point before differential expression analysis [26]. Because 
segments of the broadly sinusoidal progression curve can 
be approximated by linear and polynomial functions, that 
method improves accuracy in sample sets with small var-
iance in IDC progression. However, as the method does 
not specifically incorporate the cyclic nature of expres-
sion, it is prone to potential overfitting and is not use-
ful for samples whose developmental stage distribution 
spans reinvasion of new uninfected RBCs as the develop-
mental cycle continues.

Cyclical regression covariates have been applied to a 
range of biological data with cyclical covariance, includ-
ing diarrheal severity, transmission of malaria, and sea-
sonal changes in human gene expression [27–32]. Here 
we examine the use of cyclical regression covariates to 
disentangle expression differences due to developmental 
stage progression from differences in response to clini-
cal artemisinin treatment in P. falciparum parasites. We 
demonstrate that small differences in developmental 
stage can generate both false positive and false nega-
tive associations between transcript levels and the clini-
cal phenotype for artemisinin resistance and show how 
these errors can be significantly reduced by using CRC to 
align developmental progression in two different strains. 
We then apply this method as a linear model correction 
with cyclical regression covariates to the Mok et  al. set 
of ex vivo P. falciparum transcriptional samples previ-
ously assessed by transcriptional staging against Dd2 and 
found fewer differences in the number of transcripts 
identified as differentially expressed in clinically arte-
misinin resistant parasites[24]. The genes we identified as 
differentially expressed were largely a subset of the genes 
identified in the Mok et al. 2015 study. However, we also 
detected differentially expressed genes in a functional 
category not detected in the Mok et al. 2015 study. Our 

results, taken in combination with our models and sim-
ple demonstrations with real data, indicate that CRC suc-
cessfully reduces the number of false positives and false 
negatives that result from misalignment of developmen-
tal stages.

Results
IDC misalignment generates type I and type II errors
Our simple model has two different P. falciparum strains 
with identical gene expression profiles. Comparison of 
a transcriptional sample at the same point in develop-
mental progression reveals no differential expression 
(Fig. 1 A). However, when the two strains are sampled at 
different points in their respective cyclical transcriptional 
progression and compared without adjustment, a signifi-
cant gene expression difference is falsely detected, a Type 
I error (Fig. 1B). Two strains with a true gene expression 
difference sampled at the same point in IDC progres-
sion will show a significant difference that actually exists 
(Fig.  1  C). Sampling these same two strains at different 
time points in their respective progressions can generate 
the appearance of a difference where none exists (a Type 
I error) while failing to detect a true difference, a Type II 
error (Fig. 1D).

Examination of the transcriptional profiles of two fea-
tures (PF3D7_1034400 and PF3D7_0926700) in the P. 
falciparum strains HB3 and 3D7 illustrates the effect 
of misalignment in real data [15, 33]. The sequence 
PF3D7_1034400 displays a characteristic wave pattern of 
expression across the entire IDC that is similar for both 
strains when transcriptional profiles correctly begin at 
0 hpi (Fig.  2  A). A computational shift of the sequence 
from HB3 eight hours forward results in the appearance 
of different expression between the two sequences across 
multiple time points, false positives driven solely by mis-
alignment (Fig.  2B). In the alternative case, sequence 
PF3D7_0926700 shows clear transcriptional differences 
at 40 hpi between HB3 and 3D7 when t = 0 hpi is cor-
rectly determined for both parasite strains (Fig.  2  C). 
Computationally shifting HB3 eight hours forward ren-
ders this transcriptional difference at 40 hpi undetectable 
(a Type I error) and generates a false difference at 20 hpi 
(a Type II error) (Fig. 2D).

Performance of cyclical regression covariates when IDC 
progression is the only variable
We tested the effect of cyclical regression covariates on 
a published P. falciparum dataset containing transcrip-
tional profiles of parasite strain PB58 collected at three 
time points (6 hpi, 26 hpi, and 38 hpi) with three biologi-
cal replicates for each time point [34]. Because all of the 
samples were taken from the same parasite and the data 
were replicated, any differential expression detected must 
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solely be a result of different IDC progression times. Pair-
wise comparison of different time points (e.g., 6 hpi with 
26 hpi) reveals the extent of possible false positive asso-
ciations when the confounding effect of IDC progression 
is not removed (Table 1. The large number of genes con-
sidered significantly expressed entirely as a result of pro-
gression differences demonstrates that any stage-blind 
analysis of transcription risks large confounding effects 
due to distinct stage progressions.

We next generated a differential expression analysis 
using a linear model including the covariates (Methods). 
Briefly, if we consider IDC progression as a circle, we 
can calculate any sample’s location on that circle using 
its IDC time period and include those coordinates as 
covariates in a linear model. After accounting for stage 
progression using cyclical regression covariates, our anal-
ysis finds no differentially expressed genes. (Table 1) The 
method eliminated the confounding that caused the false 
positives in this dataset.

Application of cyclical regression covariates to a set of ex 
vivo P. falciparum transcript samples
Comparison of transcriptional profiles of ex vivo sam-
ples could reveal the genetic basis for known drug resist-
ance and reveal new resistance mechanisms; however, 
the transcriptomes of parasites from these clinical sam-
ples will necessarily represent a range of different stages 
of progression through the IDC. A confounding factor, 
in this case progression through the IDC, is a variable 
that influences the values of another variable, in this case 
response to artemisinin. If the approach used to identify 
Group A has resulted in a relatively accurate alignment 
of developmental stage across samples (Fig. 3), we expect 
that when we use the inferred IDC progression time cal-
culated by the authors, our correction method will result 
in the nearly the same set of differentially expressed 
genes. Because Group B samples represent a broader 
stage distribution (10-20 hpi) (Fig. 3), we expect that the 
gene expression analysis of uncorrected versus corrected 
data will result in much less overlap.

The Venn diagram for the genes identified as differ-
entially expressed in Group A shows an 83.8% overlap 
(Fig.  4  A). No genes are identified as downregulated in 

Fig. 1  Errors caused by comparison of improperly alignedcyclical transcription data. A and B show two model features with identicalexpression 
patterns; C and D represent two model features with realdifferences in gene expression. A: When 0 hpi is correctly aligned forboth, single 
observations (red bars) correctly detect no difference. B:When 0 hpi is improperly aligned, single observations (red bars) detect adifference between 
strains where none exists. C: Proper alignment of 0hpi allows single observations (red bars) to detect the true difference. D: Improper alignment of 0 
hpi obscures the true difference in singleobservations.
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Group A in either case (Additional Files 3 and 4). Exami-
nation of the differentially expressed upregulated genes 

by Gene Ontology (GO) Slim subsets reveals that the 
uncorrected data contain five GO Slim subsets (a total of 
69 genes) not detected in the corrected Group A, while 
one GO Slim subset ‘Cellular component assembly’ con-
taining 17 genes, is absent from the uncorrected analy-
sis (Fig. 4, Additional File 3). An investigation of these 17 
genes reveals the inclusion of two additional proteasome 
subunits PF3D7_0723600 (proteasome assembly chap-
erone 4, putative) and PF3D7_1130400 (26  S protease 
regulatory subunit 6  A, putative). Protein homeostasis 
and the proteasome have been implicated in resistance as 
a key target for artemisinin mediated killing [35, 36] and 
drug response [37]. Proteasome inhibitors are highly syn-
ergistic with artemisinin and reverses artemisinin resist-
ance making the proteasome an important target for 
combination therapies and drug development [38–40]. 
The addition of these 17 genes agrees with and further 
bolsters the original findings presented in Mok et al. and 
adds new features that merit additional investigation.

Comparison of the results of this same analysis con-
ducted on Group B genes reveals a much larger difference 
between the uncorrected and corrected analyses, with 

Fig. 2  Comparison of P. falciparum transcriptionalprofiles of two features in strains HB3 and 3D7 data. A:Correct assignment of 0 hpi shows little 
difference in the expression ofPF3D7_1034400 between HB3 and 3D7. B: An 8 h shift in HB3 IDC progressiontiming produces differential expression 
at 20 h and 40 h due to the progressionshift. C: In PF3D7_0926700, a genuine expression difference exists between HB3and 3D7 at 40 hpi. D: An 8 h 
shift in HB3 expression obscures the differentialexpression at 40 h, and generates a difference at 20 h; the misalignmentcreates both Type I and Type 
II errors. Figures A, B, C, and D are derivedfrom transcriptional time course data from HB3 and 3D7 [15, 33].

Table 1  Removing the effect of stage removes Type I errors. 
Three replications of whole transcriptome samples from PB58 at 
3 time points; 6 hpi, 26 hpi, and 38 hpi. A: In silico misalignment 
of the time points reveals the extent of expression differences 
that appear due to this misalignment (p < 0.01, FDR < 0.05). B: 
Application of cyclical regression covariates to correctly align 
the replications results in no differences in gene expression, the 
expected result of replication for a single strain in the haploid IDC 
stage

Original samples

6 hpi 26 hpi 38 
hpi

In silico 
mis-aligned 
samples

6 hpi - 2989  294

26 hpi 2989 - 457

38 hpi  294 457 -

CRC aligned 
samples

6 hpi  - 0 0

26 hpi 0 - 0

38 hpi 0 0 -
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only a 26.5% overlap (Fig.  4  B). The uncorrected Group 
B analysis identifies upregulated genes in three GO Slim 
subsets totaling 59 genes, while no upregulated genes 

are detected in CRC corrected Group B. The uncor-
rected Group B analysis identifies 395 downregulated 
genes across nine GO Slim subsets, while the corrected 

Fig. 3  StageDistribution of Mok et al. 2015 data. Distribution of the maximum correlation of each sample toeach time point in the Dd2 reference 
time course in hours post invasion (hpi) [25]. The distribution in Group A is relativelynarrow, indicating good alignment by developmental stage; the 
distribution inGroup B indicates poor alignment. Group A+B is the A and B samples combined,then aligned. The A+B analysis was done to test the 
ability of CRC to detectednon-developmental stage related expression differences in poorly staged samples.

Fig. 4  Overlapof genes considered significant before and after correction with GO Slimresults.Comparison of the genes considered significantly 
correlated with patientclearance half-life in Groups A (A), B (B) and A+B (C) before (green) andafter (purple) the application of cyclical regression 
covariate correction. D, E, and F show the comparison of up and downregulated GO Slim categoriesbefore and after the application of cyclical 
regression covariate correctionfor each group A, B, and A+B, respectively. Size of the point corresponds tothe number of genes detected in the 
particular category and color correspondsto P-value.
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Group analysis identifies many fewer downregulated 
genes (219) across six GO Slim subsets, three of which 
are shared with the uncorrected analysis (Fig. 4 E, Addi-
tional File 3). This relative degree of overlap (or lack of 
it) in Groups A and B is expected, assuming that better 
alignment of stage across samples will reduce the number 
of false positives as well as identify what were false nega-
tives in the uncorrected analysis. Using our CRC adjust-
ment, we have generated data upon which to base new, 
more precise, testable hypotheses of a gene list less likely 
to include both false positives and false negatives.

The results of our functional analysis of Group B genes 
highlight another potential value of the CRC method. 
Mok et  al. did not include an investigation of Group B 
in their analysis and conclusions, presumably because 
of their estimated broad distribution of developmental 
stages ranging from 10 to 20 hpi and their expectation 
that later stages do not differ in artemisinin response 
between resistant and sensitive parasites. However, a 
slowing of the transcriptional program during this later 
ring stage of the IDC has been associated artemisinin 
resistant parasites [23]. Our GO enrichment analysis of 
the genes in Group B found GO Slim categories of ‘Trans-
lation’, ‘Chromosome organization’, and some metabolic 
processes, suggesting the gene expression for these late 
ring to early trophozoite samples have relevant informa-
tion about artemisinin resistance and related phenotypes.

We further challenged our method by combining the 
Mok et al. ex vivo data, creating Group A+B, to simulate 
the scenario wherein samples are broadly poorly staged 
(i.e., as would occur when there is not an option to focus 
on a precisely staged set) (Fig. 3, Additional File 3). The 
combined analysis found an overlap of 40.8% between 
corrected and uncorrected Group A+B (Fig.  4C). The 
corrected Group A+B analysis identified 1051 genes 
upregulated in 15 GO Slim subsets, many more than 
the 695 upregulated genes when Group A was analyzed 
alone. Importantly, following CRC correction of Group 
A+B, 15 upregulated GO Slim categories were identified, 
including all 9 from the CRC-corrected Group A GO 
Slims, with the categories occurring in the same ranked 
order of significance (with no correction applied, we find 
2 of 9 GO Slims) (Fig. 4  F, Additional File 3). The A+B 
analysis detected 72 downregulated genes in two GO 
Slim subsets (‘DNA metabolic process’ and ‘Response 
to stress’) that were not detected in the CRC-corrected 
analysis of Group B alone. Notably, these two GO Slim 
subsets were detected as downregulated in Group A+B 
without CRC applied. While a downregulation of ‘DNA 
metabolic processes’ was reported as enriched in the 
original Mok et  al. study supporting our observation, 
we also find the inclusion of downregulated ‘Response 
to stress’ in our analysis (a function that was removed 

from Group B after CRC correction). The re-inclusion of 
‘Response to stress’ diverges from the corrected analy-
sis of Group B and other reports that artemisinin causes 
oxidative stress through damage of proteins. We there-
fore conservatively interpret this observation as a false 
positive; CRC correction may not overcome an excess 
of poorly aligned developmentally staged samples, as 
simulated by our Group A+B analysis. Application of 
CRC correction should be used in concert with rigorous 
experimental methods to control for developmental stage 
composition among the samples when possible.

Discussion
Precise alignment of P. falciparum developmental stages 
improves the accuracy of detection of transcriptional 
changes in the parasite due to specific perturbations. 
The challenge of accurately aligning stage can be partly 
assuaged when working in cultured (in vitro) parasites 
using synchronization methods and careful monitoring 
of stage composition, however these steps are time and 
labor consuming and some stage variation will remain. 
For studies using clinically derived (ex vivo) blood sam-
ples it is not possible to experimentally control for the 
stage composition. Studies that aspire to efficiently 
identify emerging drug resistance mechanisms using 
transcript readouts will benefit from a method that can 
specifically correct for diversity in developmental stages 
among clinical samples. A specific (known) confounding 
factor cannot be removed post hoc by simply changing 
the False Discovery Rate to zero or lowering the value 
used to decide the cutoff for significance. Such a strategy 
is based on the fundamental assumption that the inves-
tigator has already accounted for serious confounding 
in the experimental design or has validated a method of 
correction prior to analysis. Here we demonstrated how 
misalignment of IDC between samples generates both 
Type I and Type II errors. We further demonstrated the 
strong impact that even a small degree of misalignment 
has on the detection of differential gene expression asso-
ciated with drug resistance.

We expected to see an impact of CRC on our reanalysis 
of the Mok et  al. 2015 data because of the ideal oppor-
tunity it provided to directly assess our method on sam-
ples where stage could not be experimentally controlled. 
While we detected small differences even in the compara-
tively well-staged Group A, we observed much larger dif-
ferences between CRC-corrected and CRC-uncorrected 
in Group B. Importantly, the Gene Ontology enrich-
ments of the differentially expressed genes we detected 
in Group B contain many terms associated with cellu-
lar metabolism, a finding consistent with the working 
theory that Kelch13 propeller mutations influence rates 
of endocytosis [41]. The lack of free heme produced by 
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a reduction in hemoglobin uptake and digestion would, 
in theory, limits the activation of artemisinin. However, 
reducing parasite metabolism may produce broader 
effects on parasite biology in the form of a slower cell 
cycle progression from late rings to trophozoites. Our 
observation of downregulated GO Slims, ‘Translation’ 
and ‘Chromosome organization’, are consistent with the 
parasite slowing its development through transcriptional 
mechanisms. With the use of CRC, we find that analysis 
of group B provides offers additional interpretation than 
was presented in the original study.

Most transcribed genes are strongly influenced by 
developmental stage. Their expression across the cycle 
takes the form of a cascade that cannot be accurately 
parsed using visual assignment of morphological stages 
[15, 16, 33]. A recent study of the transcriptional cas-
cades of parasites with varying cycle lengths demon-
strated a broad consistency in the order of cyclically 
expressed genes through the cascade, and this was not 
altered by overall cell cycle duration or the proportional 
length of specific IDC stages determined morphologi-
cally [16]. That study hypothesized an intrinsic oscilla-
tor mechanism that controls the transcriptional network 
that dictates the cascade and progression through the 
IDC [16]. The broad consistency and cyclical nature of 
the cascade is why the simple and intuitive CRC method 
can effectively correct for transcriptional differences due 
entirely to stage. We anticipate the CRC method can be 
usefully extended to in vitro time series data, investiga-
tions of mechanisms controlling the cascade, and the 
regulation of transcription as pertains to artemisinin 
resistance and the connection of cell metabolism to tran-
scriptional signatures of stage progression at high reso-
lution. With the exception of single cell RNAseq studies, 
any statement about a P. falciparum sample’s location in 
the IDC is, in reality, an estimate of the midpoint of the 
IDC progression of all parasites in an ex vivo sample. The 
general assumption is that in vivo, within a single human 
host, parasites are highly synchronized. This assumption 
rests on years of clinical data that show that the recur-
rent fever occurs when millions of parasites simultane-
ously burst out of circulating red cells. Novel resistance 
phenotypes may involve a degree of asynchrony with 
the result that some parasites escape drug treatment 
targeted to the early ring stage. Reports of patients with 
two parasite broods shifted by 24 h, instead of one brood 
synchronized to a 48 h cycle indicate that the parasite is 
capable of altering the period of the cycle [42]. Different 
parasite strains infecting the same individual may not be 
synchronous with each other, resulting in a complex pat-
tern of overlapping developmental cycles that our simple 
method does not address [43]. Predictive modeling based 
on RT-qPCR of only three genes verified as markers of 

developmental stage, combined with patient symptoms, 
can be used to identify parasite age in single clone infec-
tions [44]. Our method along with other improved meth-
ods for direct detection of parasite stage will enhance the 
ability of the malaria community to extract meaningful 
data from clinical samples in all stages in the IDC, espe-
cially in geographic regions where single clone infections 
are typical. This is the case for the Mekong delta and 
surrounding regions, where parasites resistant to arte-
misinin and ACT therapies have originated and continue 
to spread. Reports continue to illustrate that artemisinin 
resistance mechanisms are neither simple nor fully elu-
cidated putting ACT therapies at risk [41]. The straight-
forward CRC method, by reducing the false positives 
generated by misaligned developmental stage progres-
sion, is a step toward a more precise understanding of the 
mechanisms of resistance artemisinin and other antima-
larial drugs.

Conclusions
Here we have demonstrated the use of cyclical regres-
sion covariates to reduce the major confounding factor in 
studies focused on the detection of expression difference 
between strains of P. falciparum by leveraging the unu-
sual periodicity of transcription due to developmental 
progression through the IDC. Cyclical regression covari-
ates have immediate application to studies where in vitro 
synchronization of all samples to the same developmen-
tal time point is not feasible, primarily parasite transcrip-
tome sequencing direct from clinical blood samples, a 
widely used approach to frontline detection of emerging 
drug resistance.

Methods
Demonstration of the effects of progression misalignment
In order to demonstrate the effect of shifts in IDC tim-
ing on gene expression, two model data sets were used. 
The model datasets (Genes A and B) are sinusoidal 
curves with a period of 48 h. To demonstrate the effect 
of shifts in IDC timing in real P. falciparum time course 
data, we obtained multiple time point transcription 
data from PlasmoDB.org for two strains, 3D7 and HB3. 
[15, 33] The genes used as examples (PF3D7_1034400 
and PF3D7_0926700) were chosen based on their rep-
resentation of cyclic expression and their similar-
ity (PF3D7_1034400) or difference (PF3D7_0926700) 
between strains. Unadjusted data was graphed as-is; 
adjusted data was plotted against the actual sampling 
time plus 8 h, with any time point past 48 h being plot-
ted as the time point minus 48 in order to account for the 
48-hour IDC.
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Determination of IDC Timing Using Transcriptional Profiles
For determination of the actual point in IDC progres-
sion for a given sample, Pearson Correlation Coefficients 
(PCC) between each sample’s whole transcriptome pro-
file and the profile of each time point in the 3D7 reference 
IDC time course (hourly time points in the in vitro 3D7 
IDC) were determined [23, 33]. The hours post-infection 
time point (hpi) corresponding to the maximum PCC 
was considered the sample’s IDC timing, and was used in 
subsequent steps. This was performed using the function 
stagingByTranscription() in the R package PFExpTools.

Determination of Cyclical Regression Covariates
With samples taken at different points in progression dis-
playing differential gene expression based solely on pro-
gression, it is necessary to identify and remove any cyclic 
effect in a sample set. With a linear effect, we could use a 
single covariate related to the confounding linear effect to 
correct; as our confounding effect is cyclical, we require 
two covariates. We calculated paired cyclical regression 
covariates for each transcriptional sample to correct for 
progression’s effect on gene expression. The progression 
time calculated previously (T) was used in the following 
formula:

The covariates were generated using the function CRC-
generation() in the R package PFExpTools.

Initial Application of Cyclical Regression Covariates
For testing the initial proof of concept, we looked for a 
dataset containing multiple replicated time points from 
a single parasite strain; this allowed us to associate any 
observed differences between time points as progression 
driven. The gene expression data used to demonstrate the 
efficacy of the cyclical regression covariate method were 
obtained from the Gene Expression Omnibus; the data 
for PB58 are listed under Accession Number GSE119514. 
We used lm() in R; for the uncorrected analysis our 
model was Timepoint ~ Gene Expression for each gene, 
and for the corrected analysis the model was Timepoint 
~ Gene Expression + xcovariate + ycovariate. Covariates 
were generated as described previously. Genes were con-
sidered differentially expressed if the p-value of fit was < 
0.01 and FDR < 0.05.

Application of Cyclical Regression Covariates on a Large ex 
vivo Dataset
We used the Mok et al. 2015 ex vivo dataset, 1043 clini-
cal samples taken at various points in IDC progression, 
to examine the effect of cyclical regression covariates on 
the results of the gene expression analysis. We retrieved 
the normalized uncurated Mok data from the Gene 

cos(2πT/48), sin(2πT/48)

Expression Omnibus, Accession Number GSE59097, 
and updated the curation to the current transcriptome 
assembly. We aligned the sequence for each probe with 
Version 46 of the P. falciparum transcriptome. Probes 
that had an alignment with a bitscore > 130 and no sec-
ondary alignment scored over 60 were named to the gene 
they aligned with [45]. In the case that multiple probes 
aligned to a single gene, the signals were averaged. Genes 
with data present in greater than 80% of samples were 
used in the analysis. This curation was performed using 
the fullCurate() function in the R package PFExpTools 
(Additional File 1, Additional File 2).

Gene expression analysis for two groups identified 
by Mok et al. 2015 (Group A+B) was performed as fol-
lows. The relationship of the expression of each gene with 
patient clearance half-life was evaluated using a simple 
linear regression model in R. For each gene in the cor-
rected dataset, the simple linear model included the 
paired cyclical regression coefficients. Each gene in the 
uncorrected dataset was evaluated using a simple lin-
ear regression model without the paired cyclical regres-
sion coefficients. For the uncorrected analysis our model 
was Phenotype ~ Gene Expression for each gene, and for 
the corrected analysis the model was Phenotype ~ Gene 
Expression + xcovariate + ycovariate. The cutoff value of 
p < 0.05 and FDR < 0.25 were the criteria for a decision 
of differential gene expression for each gene. The covari-
ates were generated using the function CRCgeneration() 
in the R package PFExpTools; the IDC progression value 
provided in the associated metadata was used. We com-
pared the gene expression analysis uncorrected and then 
corrected using CRC for groups A and B separately.Data 
analysis and figure generation were performed in R Ver-
sion 3.3.1. Venn diagrams were created using the R pack-
age VennDiagram [46].

GO and GO Slim annotation
We used the GO and GO Slim applications implemented 
in PlasmoDB beta release 50 (https://​plasm​odb.​org/​
plasmo/​app/). GO Slim provides a less detailed anno-
tation by grouping features into broader categories of 
biological functions. This is useful when the investiga-
tors wish to focus on a given broad biological function 
or, as is the case with this investigation, to determine if a 
broad category of biological functions was missed if the 
CRC correction is not used. Additional files contain the 
Go Slim annotations (Additional File 3) and the more 
detailed GO annotations (Additional File 4), both with 
and without the CRC correction.

Availability of data and materials
The HB3 and 3D7 time course data is available for down-
load at PlasmoDB.org. The PB58 data is available at the 

https://plasmodb.org/plasmo/app/
https://plasmodb.org/plasmo/app/


Page 10 of 11Foster et al. BMC Genomics          (2022) 23:180 

Gene Expression Omnibus under Accession Number 
GSE119514. The Mok et  al. dataset is available at the 
Gene Expression Omnibus under Accession Number 
GSE59097. The updated curation of the Mok et al., 2015 
dataset is provided as Additional File 1, with patient sam-
ple labels in the columns and feature names in the rows. 
A figure demonstrating a quality control comparison of 
our curation of the Mok et al. dataset and their reported 
analysis is provided as Additional File 2. The R package 
PFExpTools is freely available for download and use at 
https://​github.​com/​foster-​gabe/​PFExp​Tools, including 
all documentation and source code under the GPL-3 
license. This manuscript was prepared using Version 1.0 
of PFExpTools.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​021-​08281-y.

Additional file 1. The result of our re-curation of the Mok et al. data 
originally sourced at the Gene Expression Omnibus at Accession Number 
GSE59097. The dataset was curated as described in Methods using the 
PFExpTools R package. This file is a matrix of expression values, with the 
features in rows and samples in columns in a comma delimited file format.

Additional file 2. Provides quality control comparisons between our cura‑
tion and analysis of the Mok et al. data and the originally published results.

Additional file 3. Contains the Gene Ontology Go Slim category results 
for all the comparisons.

Additional file 4. Contains the complete Geno Ontology category results 
for all the comparisons.
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